Demixing of colloid-polymer mixtures in poor solvents.
نویسندگان
چکیده
The influence of poor solvent quality on fluid demixing of a model mixture of colloids and nonadsorbing polymers is investigated using density functional theory. The colloidal particles are modeled as hard spheres and the polymer coils as effective interpenetrating spheres that have hard interactions with the colloids. The solvent is modeled as a two-component mixture of a primary solvent, regarded as a background theta solvent for the polymer, and a cosolvent of point particles that are excluded from both colloids and polymers. Cosolvent exclusion favors overlap of polymers, mimicking the effect of a poor solvent by inducing an effective attraction between polymers. For this model, a geometry-based density functional theory is derived and applied to bulk fluid phase behavior. With increasing cosolvent concentration (worsening solvent quality), the predicted colloid-polymer demixing binodal shifts to lower colloid concentrations, promoting demixing. For sufficiently poor solvent, a reentrant demixing transition is predicted at low colloid concentrations.
منابع مشابه
Mixtures of charged colloid and neutral polymer: influence of electrostatic interactions on demixing and interfacial tension.
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa,...
متن کاملPhase separation in star-polymer-colloid mixtures.
We examine the demixing transition in star-polymer-colloid mixtures for star arm numbers f=2,6,16,32 and different star-polymer-colloid size ratios 0.18< or =q< or =0.50. Theoretically, we solve the thermodynamically self-consistent Rogers-Young integral equations for binary mixtures using three effective pair potentials obtained from direct molecular computer simulations. The numerical results...
متن کاملStar-polymers as depleting agents of colloidal hard spheres
– We examine the phase behavior of star-polymer–colloid mixtures for star-tocolloid size ratios smaller than unity, by employing recently derived effective interactions between the constituent particles. Tuning the arm number of the star-polymers provides a natural bridge between the well-known borderline models of colloid-polymer and binary hard-sphere mixtures. By canonically tracing out the ...
متن کاملPhase behavior and structure of star-polymer–colloid mixtures
We calculate the phase diagrams of mixtures between hard-sphere colloids and star-polymers of arm numbers f 52,6,32 for different star-polymer–colloid size ratios 0.2<q<0.6 using an effective one-component description for the colloids in the presence of the stars. We map the full two-component system onto an effective one-component system by inverting numerically the Ornstein–Zernike equation f...
متن کاملPenetrability in model colloid–polymer mixtures
In order to study the effects of penetrability in mixtures of dissimilar particles we consider hard ~colloidal! spheres and penetrable spheres. The latter may be taken to represent ideal, noninteracting polymer coils. Polymers and colloids interact by means of a repulsive step-function pair potential, which allows for insertion of colloids into the polymer coil. The potential strength is obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 65 6 Pt 1 شماره
صفحات -
تاریخ انتشار 2002